Syllabus: CHM 151IN – General Chemistry I

Course Information

<table>
<thead>
<tr>
<th>Course Prefix/Number: CHM 151IN</th>
<th>Credit Hours: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: Fall 2018</td>
<td></td>
</tr>
<tr>
<td>Class Days/Times: MWTH, 3:45 - 5:45 pm</td>
<td>Course Title: General Chemistry I</td>
</tr>
<tr>
<td></td>
<td>Room: I:Wemta Ki 5 (Science Lab)</td>
</tr>
</tbody>
</table>

Instructor Information:

<table>
<thead>
<tr>
<th>Name: Lucinda Begay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone (message only): 623-6175</td>
</tr>
<tr>
<td>E-mail: lbegay@tocc.edu</td>
</tr>
<tr>
<td>Office location: N/A</td>
</tr>
<tr>
<td>Office hours: Appointments before or after class</td>
</tr>
</tbody>
</table>

Course Description:

This integrated lecture-lab course is designed to develop a basic understanding of the central principles of chemistry that are useful to explain and predict the properties of chemical substances based on their atomic and molecular structure. Topics covered include atomic structure, chemical bonding, reaction stoichiometry, behavior of gases, and reactions in solutions, and thermochemistry. Additionally, students will be introduced to modern laboratory techniques and participate in experimental activities that promote the development of basic and advanced science-process skills. The course is designed for students who require a strong foundation in general chemistry, such as science and engineering majors, pre-medical and pre-pharmacy students.

Course Objectives:

During this course, the students will:
1. Convert between SI (metric) units.
2. Name a chemical compound when supplied with the formula and write the formula when supplied.
3. Identify trends in periodic properties of the elements on the periodic table.
4. Write and balance molecular, ionic and net ionic chemical equations.
5. Convert among atoms, moles, grams, and molarity / volume of one substance to atoms, moles, grams, and molarity / volume of the same or a different substance.
6. Determine oxidizing agent, reducing agents, reduced species, oxidized species, and oxidation number of participating elements in reactions and compounds.
7. Predict solubility and dissociation of substances in water and the effects that the solubility and
dissociation has on the solution.
8. Predict ideal gas behavior under differing conditions of pressure, temperature, volume, and quantity of
gas.
9. Calculate energy values from thermochemical data.
10. Predict the behavior and properties of electrons and photons and their interactions.
11. Predict the structure and electrical properties of molecular compounds

Course Structure:
This course is an integrated lab/lecture course where the labs are integrated into the regular class
periods. This course consists of three units. Each unit consists of PowerPoint lectures, assigned
reading, films, in-class activities, chemical thinking research report, discussions, laboratory project and
several quizzes.

Course Assessment:
Course assessment consists of exams, quizzes, discussions, short written assignments, informal in-
class assessments, and laboratory reports. Study guides will be available to help you prepare for
exams. In accordance with my teaching philosophy in which I believe student learning occurs
primarily through hands-on, real world application of course materials, exams usually comprise 50%
or less of the final grade (although they are still an important aspect of course assessment and your
grade). In order to facilitate on-going faculty-student feedback and provide formative assessment,
many class projects are divided into smaller intermediate steps such as topic choice, project
proposals, and rough drafts. Student-to-student assessments are also included in this course though
peer review of group participation and written assignments. I welcome student feedback about the
course anytime. I will also provide students an opportunity to give me feedback on their course
experience through an anonymous mid-course and final course evaluation.

Texts and Materials:
Chemistry: The Central Science, Brown, LeMay, Bursten, Murphy and Woodward, Stoltsfus, 14th
dition. : Scientific calculator to use for homework assignments and exams. A lab notebook is
recommended.
Evaluation and Grading & Assignments:
Exams: There are 4 exams during the course of the semester. 3 regular semester unit exams are in-class and you are allowed 1 ea. 8.5 x 11 sheet of reference notes. The 4th exam, the Final, is cumulative and is required. The final may not be dropped for purposes of grading. Each exam is worth 100 points and consists of both multiple choice and short answer problems. Of the 3 semester exams the lowest can be replaced by taking the Make-up exam during finals week. This means that if you do not do well on one of the 3 regular semester exams or if you cannot take one then it can be made up at the end of the semester.
Quizzes: 10 quizzes will be given with each worth 10 pts each (worth a total of 1000 pts total)
Homework: 10 homework assignments will be given, 1 for each chapter with chapter 3 and 4 combined. Each worth 10 points (100 pts total). These will correspond to the chapters and material on each of the exams.

<table>
<thead>
<tr>
<th>Evaluation:</th>
<th>Points:</th>
<th>Percent of Total Points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>400 (4 @ 100 pts)</td>
<td>40%</td>
</tr>
<tr>
<td>Labs-10 @ 25 pts</td>
<td>250 pts</td>
<td>25%</td>
</tr>
<tr>
<td>10Quizzes & 10Homework Assignments</td>
<td>200 pts</td>
<td>20%</td>
</tr>
<tr>
<td>Lab Exam</td>
<td>50 pts</td>
<td>5%</td>
</tr>
<tr>
<td>Final Research Project—Culture Chemical Thinking Report Powerpoint Presentation</td>
<td>100 pts</td>
<td>10%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1000</td>
<td>100</td>
</tr>
</tbody>
</table>

Himdag Cultural Component:
Course will explore existing elements, materials and environmental issues where this applies to culture chemical thinking to continue improving or restoring components of Himdag. Students will also formulate a personal ethic regarding the use of chemical thinking in science teaching and research, incorporating perspectives from Western science and TOCC Core values.
Course Outline (see schedule for specific dates):

I. Introductory Concepts
 A. The Chemist's tool bag
 1. Measurements and Significant Figures
 2. Dimensional Analysis
 B. The Scientific Method
 C. Classifying Matter and its Properties
 D. Traditional Knowledge of Chemistry

II. Atomic Structure
 A. Introducing the Atom and its component parts
 B. Developing the wave mechanical view of the atom
 C. Applying the electronic nature of the atom to:
 D. Electron configurations
 E. The Periodic Table
 F. Periodic Trends

III. Chemical Bonding
 A. Ionic and Covalent Bonding
 B. Lewis Structures and Molecular Shapes
 C. Bond Polarity and Hybridization

IV. Chemical Reactions and Stoichiometry
 A. Working with Chemical Equations
 B. Stoichiometry calculations
 C. Reactions in Aqueous Solution

V. Introduction to Thermodynamics
 A. Chemical reaction enthalpies
 B. Thermal energy and changes in temperature

VI. Studying the States of Matter
 A. Kinetic-Molecular Theory
 B. Intermolecular Forces
 C. Gas specific
 1. Modeling Gases
 2. Mixtures of gases and partial pressures
 D. Liquid specific
 E. Solutions
 1. Characteristics
 2. Concentration
 3. Colligative Properties (Optional)

VII. Illustration/Reinforcement/Extension of Above Content in Actual Laboratory Setting
 A. Development of expertise in the skills and techniques of the chemistry laboratory
 1. Pipetting
 2. Massing
 3. Titration
 4. Other
 B. Gain experience with laboratory apparatus including one or more technologically sophisticated pieces of instrumentation
C. Explore the process of testing/verifying hypothesis through experimental design and hands-on experimentation.

CHM 151IN—Chemistry
TENTATIVE SCHEDULE FALL 2018
BEGAY

<table>
<thead>
<tr>
<th>Date</th>
<th>Assigned Reading</th>
<th>Topic</th>
<th>Assignments, Labs, Class Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td></td>
<td>Intro to Class, syllabus, chemical safety</td>
<td>Chemical Safety Film</td>
</tr>
<tr>
<td>Ch. 1</td>
<td></td>
<td>Matter and Measurement</td>
<td>Lab 1: HW1</td>
</tr>
<tr>
<td>Ch. 2</td>
<td></td>
<td>Atomic Theory</td>
<td>Lab 2: HW2 Quiz 1</td>
</tr>
<tr>
<td>Ch. 3-4</td>
<td></td>
<td>Chemical Reactions and Reaction Stoichiometry</td>
<td>Lab 3 HW (3&4) combine Quiz (2&3) combine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review/EXAM I</td>
<td>Lab 4 Tohono O’odham Culture Chemical Thinking Discussion EXAM I</td>
</tr>
<tr>
<td>Ch. 5</td>
<td></td>
<td>Thermochemistry</td>
<td>Lab 5 HW 5 Quiz 4</td>
</tr>
<tr>
<td>Ch. 6</td>
<td></td>
<td>Intro to Quantum</td>
<td>Lab 6 HW 6 Quiz 5</td>
</tr>
<tr>
<td>Ch. 7</td>
<td></td>
<td>Periodic Properties</td>
<td>Lab 7 HW 7 Quiz 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review/EXAM II</td>
<td>Tohono O’odham Culture Chemical Thinking Discussion EXAM II</td>
</tr>
<tr>
<td>Ch. 8</td>
<td></td>
<td>Basics of Chemical Bonding</td>
<td>Lab 8 HW 8 Quiz 7</td>
</tr>
<tr>
<td>Ch. 9</td>
<td></td>
<td>Molecular Geometry/Theories of Bonding</td>
<td>Lab 9 HW 9 Quiz 8</td>
</tr>
<tr>
<td>Ch. 10</td>
<td></td>
<td>Gas Laws</td>
<td>Lab 10 HW10 Quiz 9</td>
</tr>
<tr>
<td>Ch. 11</td>
<td></td>
<td>Intermolecular Forces</td>
<td>Lab 11 HW 11 Quiz 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOCC Earth Day Lectures</td>
<td>Reflection on Lectures</td>
</tr>
</tbody>
</table>

(June 14, 2010, version)
<table>
<thead>
<tr>
<th>Review/EXAM III</th>
<th>Tohono O’odham Culture Chemical Thinking Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review/Makeup Exam, Makeup Lab</td>
<td>Lab Exam, Final Research Project Report: Culture Chemical Thinking, Presentation</td>
</tr>
<tr>
<td>Final Exam</td>
<td>EXAM IV</td>
</tr>
</tbody>
</table>

DISCLAIMER: This syllabus is designed to evolve and change throughout the semester based on class progress and interests. You will be notified of any changes as they occur.
Acknowledgment of Receipt of Syllabus

Please read, sign and return the following acknowledgment to me in class, or return to me at the following address:

Lucinda Begay
Tohono O’odham Community College
P.O. Box 3129
Sells, AZ 85634

☐ I have received my CHM 151IN syllabus (including course objectives, policies, requirements and schedule) and have read and understood all the enclosed materials

☐ I prefer that the instructor not call or contact me by phone anytime during the semester.

My reason(s) for taking this course:

__

__

__

My background in this area includes:

__

__

__

☐ I would like to be contacted by the instructor regarding the following concerns:

__

__

__

__

Print Name Clearly Here

Sign Name Here

Student ID Number

Telephone Number

Current Mailing Address/City/State/Zip

E-mail Address

(June 14, 2010, version)